An alternate proof that the fundamental group of a Peano continuum is finitely presented if the group is countable

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generalization of the probability that the commutator of two group elements is equal to a given element

The probability that the commutator of two group elements is equal to a given element has been introduced in literature few years ago. Several authors have investigated this notion with methods of the representation theory and with combinatorial techniques. Here we illustrate that a wider context may be considered and show some structural restrictions on the group.

متن کامل

The Continuum is Countable: Infinity is Unique

Since the theory developed by Georg Cantor, mathematicians have taken a sharp interest in the sizes of infinite sets. We know that the set of integers is infinitely countable and that its cardinality is א0. Cantor proved in 1891 with the diagonal argument that the set of real numbers is uncountable and that there cannot be any bijection between integers and real numbers. Cantor states in partic...

متن کامل

A Finitely Presented Torsion-free Simple Group

We construct a finitely presented torsion-free simple group Σ0, acting cocompactly on a product of two regular trees. An infinite family of such groups has been introduced by Burger-Mozes ([2, 4]). We refine their methods and get Σ0 as an index 4 subgroup of a group Σ < Aut(T12)×Aut(T8) presented by 10 generators and 24 short relations. For comparison, the smallest virtually simple group of [4,...

متن کامل

Rauzy fractals with countable fundamental group

We prove that every free group of finite rank can be realized as the fundamental group of a planar Rauzy fractal associated with a 4-letter unimodular cubic Pisot substitution. This characterizes all countable fundamental groups for planar Rauzy fractals. We give an explicit construction relying on two operations on substitutions: symbolic splittings and conjugations by free group automorphisms.

متن کامل

The Cremona group of the plane is compactly presented

This article shows that the Cremona group of the plane is compactly presented. To do this we prove that it is a generalised amalgamated product of three of its algebraic subgroups (automorphisms of the plane and Hirzebruch surfaces) divided by one relation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasnik matematicki

سال: 2011

ISSN: 0017-095X

DOI: 10.3336/gm.46.2.18